3.60 \(\int \frac {a+b \sec ^{-1}(c x)}{d+e x} \, dx\)

Optimal. Leaf size=247 \[ \frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e-\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (\sqrt {e^2-c^2 d^2}+e\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {\log \left (1+e^{2 i \sec ^{-1}(c x)}\right ) \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {\left (e-\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {\left (e+\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {i b \text {Li}_2\left (-e^{2 i \sec ^{-1}(c x)}\right )}{2 e} \]

[Out]

-(a+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e+(a+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^2/x^2)^(1/2)
)*(e-(-c^2*d^2+e^2)^(1/2))/c/d)/e+(a+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(e+(-c^2*d^2+e^2)^(1/2)
)/c/d)/e+1/2*I*b*polylog(2,-(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e-I*b*polylog(2,-(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(e
-(-c^2*d^2+e^2)^(1/2))/c/d)/e-I*b*polylog(2,-(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(e+(-c^2*d^2+e^2)^(1/2))/c/d)/e

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5224, 2518} \[ -\frac {i b \text {PolyLog}\left (2,-\frac {\left (e-\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {i b \text {PolyLog}\left (2,-\frac {\left (\sqrt {e^2-c^2 d^2}+e\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {i b \text {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{2 e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e-\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (\sqrt {e^2-c^2 d^2}+e\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {\log \left (1+e^{2 i \sec ^{-1}(c x)}\right ) \left (a+b \sec ^{-1}(c x)\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSec[c*x])/(d + e*x),x]

[Out]

((a + b*ArcSec[c*x])*Log[1 + ((e - Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)])/e + ((a + b*ArcSec[c*x])
*Log[1 + ((e + Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)])/e - ((a + b*ArcSec[c*x])*Log[1 + E^((2*I)*Ar
cSec[c*x])])/e - (I*b*PolyLog[2, -(((e - Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d))])/e - (I*b*PolyLog[
2, -(((e + Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d))])/e + ((I/2)*b*PolyLog[2, -E^((2*I)*ArcSec[c*x])]
)/e

Rule 2518

Int[Log[v_]*(u_), x_Symbol] :> With[{w = DerivativeDivides[v, u*(1 - v), x]}, Simp[w*PolyLog[2, 1 - v], x] /;
 !FalseQ[w]]

Rule 5224

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[((a + b*ArcSec[c*x])*Log[1 + ((
e - Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)])/e, x] + (-Dist[b/(c*e), Int[Log[1 + ((e - Sqrt[-(c^2*d^
2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] - Dist[b/(c*e), Int[Log[1 + ((e + Sqr
t[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] + Dist[b/(c*e), Int[Log[1 +
 E^(2*I*ArcSec[c*x])]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] + Simp[((a + b*ArcSec[c*x])*Log[1 + ((e + Sqrt[-(c^2
*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)])/e, x] - Simp[((a + b*ArcSec[c*x])*Log[1 + E^(2*I*ArcSec[c*x])])/e, x]
) /; FreeQ[{a, b, c, d, e}, x]

Rubi steps

\begin {align*} \int \frac {a+b \sec ^{-1}(c x)}{d+e x} \, dx &=\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e-\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e+\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{e}-\frac {b \int \frac {\log \left (1+\frac {\left (e-\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{\sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{c e}-\frac {b \int \frac {\log \left (1+\frac {\left (e+\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{\sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{c e}+\frac {b \int \frac {\log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{\sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{c e}\\ &=\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e-\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {\left (e+\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {\left (e-\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {\left (e+\sqrt {-c^2 d^2+e^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )}{e}+\frac {i b \text {Li}_2\left (-e^{2 i \sec ^{-1}(c x)}\right )}{2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 333, normalized size = 1.35 \[ \frac {a \log (d+e x)}{e}+\frac {b \left (-i \left (\text {Li}_2\left (\frac {\left (\sqrt {e^2-c^2 d^2}-e\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )+\text {Li}_2\left (-\frac {\left (e+\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right )\right )+\log \left (1+\frac {\left (e-\sqrt {e^2-c^2 d^2}\right ) e^{i \sec ^{-1}(c x)}}{c d}\right ) \left (2 \sin ^{-1}\left (\frac {\sqrt {\frac {e}{c d}+1}}{\sqrt {2}}\right )+\sec ^{-1}(c x)\right )+\log \left (1+\frac {\left (\sqrt {e^2-c^2 d^2}+e\right ) e^{i \sec ^{-1}(c x)}}{c d}\right ) \left (\sec ^{-1}(c x)-2 \sin ^{-1}\left (\frac {\sqrt {\frac {e}{c d}+1}}{\sqrt {2}}\right )\right )+4 i \sin ^{-1}\left (\frac {\sqrt {\frac {e}{c d}+1}}{\sqrt {2}}\right ) \tan ^{-1}\left (\frac {(e-c d) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {e^2-c^2 d^2}}\right )+\frac {1}{2} i \text {Li}_2\left (-e^{2 i \sec ^{-1}(c x)}\right )-\sec ^{-1}(c x) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )\right )}{e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSec[c*x])/(d + e*x),x]

[Out]

(a*Log[d + e*x])/e + (b*((4*I)*ArcSin[Sqrt[1 + e/(c*d)]/Sqrt[2]]*ArcTan[((-(c*d) + e)*Tan[ArcSec[c*x]/2])/Sqrt
[-(c^2*d^2) + e^2]] + (ArcSec[c*x] + 2*ArcSin[Sqrt[1 + e/(c*d)]/Sqrt[2]])*Log[1 + ((e - Sqrt[-(c^2*d^2) + e^2]
)*E^(I*ArcSec[c*x]))/(c*d)] + (ArcSec[c*x] - 2*ArcSin[Sqrt[1 + e/(c*d)]/Sqrt[2]])*Log[1 + ((e + Sqrt[-(c^2*d^2
) + e^2])*E^(I*ArcSec[c*x]))/(c*d)] - ArcSec[c*x]*Log[1 + E^((2*I)*ArcSec[c*x])] - I*(PolyLog[2, ((-e + Sqrt[-
(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c*d)] + PolyLog[2, -(((e + Sqrt[-(c^2*d^2) + e^2])*E^(I*ArcSec[c*x]))/(c
*d))]) + (I/2)*PolyLog[2, -E^((2*I)*ArcSec[c*x])]))/e

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arcsec}\left (c x\right ) + a}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsec(c*x))/(e*x+d),x, algorithm="fricas")

[Out]

integral((b*arcsec(c*x) + a)/(e*x + d), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsec(c*x))/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(x)]sym2poly
/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.82, size = 456, normalized size = 1.85 \[ \frac {a \ln \left (c e x +d c \right )}{e}-\frac {b \,\mathrm {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}-\frac {b \,\mathrm {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i b \dilog \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {i b \dilog \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e}+\frac {b \,\mathrm {arcsec}\left (c x \right ) \ln \left (\frac {-d c \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+\sqrt {-c^{2} d^{2}+e^{2}}-e}{-e +\sqrt {-c^{2} d^{2}+e^{2}}}\right )}{e}+\frac {b \,\mathrm {arcsec}\left (c x \right ) \ln \left (\frac {d c \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+\sqrt {-c^{2} d^{2}+e^{2}}+e}{e +\sqrt {-c^{2} d^{2}+e^{2}}}\right )}{e}-\frac {i b \dilog \left (\frac {-d c \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+\sqrt {-c^{2} d^{2}+e^{2}}-e}{-e +\sqrt {-c^{2} d^{2}+e^{2}}}\right )}{e}-\frac {i b \dilog \left (\frac {d c \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+\sqrt {-c^{2} d^{2}+e^{2}}+e}{e +\sqrt {-c^{2} d^{2}+e^{2}}}\right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsec(c*x))/(e*x+d),x)

[Out]

a*ln(c*e*x+c*d)/e-b/e*arcsec(c*x)*ln(1+I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))-b/e*arcsec(c*x)*ln(1-I*(1/c/x+I*(1-1/c
^2/x^2)^(1/2)))+I*b/e*dilog(1+I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))+I*b/e*dilog(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))+
b/e*arcsec(c*x)*ln((-d*c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))+(-c^2*d^2+e^2)^(1/2)-e)/(-e+(-c^2*d^2+e^2)^(1/2)))+b/e*
arcsec(c*x)*ln((d*c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))+(-c^2*d^2+e^2)^(1/2)+e)/(e+(-c^2*d^2+e^2)^(1/2)))-I*b/e*dilo
g((-d*c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))+(-c^2*d^2+e^2)^(1/2)-e)/(-e+(-c^2*d^2+e^2)^(1/2)))-I*b/e*dilog((d*c*(1/c
/x+I*(1-1/c^2/x^2)^(1/2))+(-c^2*d^2+e^2)^(1/2)+e)/(e+(-c^2*d^2+e^2)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ b \int \frac {\arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right )}{e x + d}\,{d x} + \frac {a \log \left (e x + d\right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsec(c*x))/(e*x+d),x, algorithm="maxima")

[Out]

b*integrate(arctan(sqrt(c*x + 1)*sqrt(c*x - 1))/(e*x + d), x) + a*log(e*x + d)/e

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acos(1/(c*x)))/(d + e*x),x)

[Out]

int((a + b*acos(1/(c*x)))/(d + e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {asec}{\left (c x \right )}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asec(c*x))/(e*x+d),x)

[Out]

Integral((a + b*asec(c*x))/(d + e*x), x)

________________________________________________________________________________________